Trigonometric inequalities
When we seeking solutions of inequalities, we first solve the appropriate equation, and then find

intervals that meet the inequalities.

Inequalities sinx >a and sinx<a

a < —1-every number is solution, Vx € R
sinx>a —1<a <1- we must solve
a > 1-no solution

a < —1-no solution
sinx<a —1<a<1-we must solve
a > 1- every number is solution, Vx € R

Example 1. Solve the inequalities:

a) sinx > -2
b) sinx>l
2

c) sinx >3
Solution:

a) sinx>-2 because —1<sinx<1 every x € R is solution.

b) sinx>l
2

First, we solve the appropriate equation:

sinx =
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Therefore, equations solutions are: s
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Now, think! Since we need to be sinx > % , we take the "upper part".
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We must add periodicity:

X
\J %+2k7z<x<%{+2k7z, k € Z is solution!

c) sinx>3

This is impossible, therefore, inequalities has no solution!

Example 2. Solve the inequalities:
a) sinx <-2
b) sinx < N2
2

c) sinx <5

Solution:

a) sinx<-2 =>Howis —1<sinx <1, therefore never be less than -2, the inequalities has no solution.

b) sinx < N2 1Y
2
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First, we solve solution: sinx = ——— > 4
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/ \ For inequalities sin x < —g we need "lower" part! So: 577[ <x< 777[
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c) sinx<5

How is —1<sinx <1, these inequalities are always satisfied, Vx € R is solution.

Inequalities cosx >b and cosx<b

b < —1- every number is solution, Vx € R
cosx>b —1<b<1-we mustsolve
b >1-no solution

b < —1- no solution
cosx<b —1<bh<1- we must solve
b>1 - every number is solution, Vx € R

Example 1. Solve the inequalities:

a) cosx >—2

b) cosx>l
2
3
C) cosx >—
2

Solution:

a) cosx >—2 every number is solution, Vx € R

b) cosx>l
2

x:£+2k7r
3
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First, we solve cosx=—
2 4

x=——+2knx

A y o
60
1 f \ >
\_ :
-60°

For the solutions we need angles which is the cosine of more thanE ,that means "right".

So: —%+2k7z<x<%+2k7z , keZ
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C) cosx>—
2

The inequalities has no solutions, because the largest value for the "cosine", as we know, can be 1.

Example 2. Solve the inequalities:

a) cosx <—2
b) cosx < 1
2

c) cosx<2

Solution:

a) cosx <—2- no solution.

1 1
b) cosxS—E - > cosx:—z
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For solution of inequalities cosx < > we need "left" part!
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Solution is: 2%[ +2kr<x< 4%[+ 2k

c) cosx<2 » every number is solution, Vx € R




Inequalities with tgx and ctgx:

These inequalities as opposed to those with sinx and cosx always have the solutions and take value from the
whole set R.

Example 1. Solve the inequalities:

a) 1gx > V3
b) tgx <1

Solution:
tgx:\/g y X=060"+km

Think, where is tgx > V32

yA
90 :
60
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240
270

First interval is make by angles from 60° to 90° .

Second interval from 240° to 270°.

So here we have two intervals with solutions!

60° < x <90° and 240° < x < 270° Add period...
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b) tgx <1
tgx =1 , Solutions are angles 45° and 225°.

We need to be tangent less than 1 (bold)

T T Vs )
——<x<— and —<x<— or, we can write:
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Example 2. Solve the inequalities:

a) ct x>—3
& 3

b) ctgx <0

Solution:

a) cigx = ﬁ = x=60" and x=240°
3
Again two intervals: 0< x <% and 7 <x< 477[

Solution is: xe(0+kﬂ,%+kﬂ)u(ﬂ+kﬂ,%’[+kﬂ)  keZ



b) ctgx=0
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£<x<7z and 3—7z<x<27r
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Examples:

1) Solve the inequalities: sin 3x —73 >0

Solution:
sin3x ——3 =0
2
sin3x = —3
2
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2) Solve the inequalities: sinx +cosx <+/2
Solution:
This is the type of "support the introduction of argument"( see trigonometric equations)
a=1
b 1
tgco=—:>tgco=I:>tgco=l
a
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4 4
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c V2

Jar b AT+

N2 _ g _
_ﬁ_l So: sin(x+¢)=

- sin(x+%) =1
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sin(x+—) <1
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It does not answer only if sin(x +%) =1
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So, solution is Vx exsept %-‘r 2k —— > x # % +2kr,keZ



3) Solve the inequalities: 2sin® x+5sinx+2>0

Solution:

2sin” x+5sinx+2 >0 —>replacement sinx =t
2t* + 5t +2 > 0 — see square inequalities!
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Since —1<sin x <1 we have to make a correction of interval!
) 1 ) 1
sinx e —E,l —_— smx>—5
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4)  Prove that applies to everyone « : 14 + >8

sin“a costa

Proof:

Transform expression on the left side!

1 1 cos’ a +sin’ «
T =3 T
sinfa cos*a sin*a+costa

sin® @ +cos* a =1/()*

(sin*a+cos’ ) =1
. . 2
sin® @ +2sin’ cos* a +cos* « = l/addE

2.2sin’ acos’ a

sin*a+cos*a=1-

2
: 2
) sin” 2«
sin*a+costa=1-—""F
2
4 . 2-sin’2a 1+1-sin’2a
sina +cos* a = =
2 2
_1+cos’2a
2
Let's go back to the task:
cos'a+sin‘a  1+cos’2a

8
- 4~ 4 T =add(y)
sin“¢-cos" ¢ 2sIn” a-cos” o 8

8(1+cos’2a) _ 8(1+cos’ 2a) 53
16sin* e cos’ & sin* 2

And this certainly is!



