
Trigonometric inequalities 

 

When  we seeking solutions of  inequalities, we first solve the appropriate equation, and then find 

 

intervals that meet the inequalities. 

 

 

Inequalities  sinx > a   and    sinx < a 

 

 
                     1−<a -every number is solution, Rx∈∀  

ax >sin        11 ≤≤− a - we must solve  

                        1≥a -no solution 

 

 

 

                        1−≤a - no solution 

ax <sin        11 ≤≤− a - we must solve 

                                        1>a - every number is solution, Rx∈∀  

 

 

Example 1.  Solve the inequalities: 

 

a) 2sin −>x  

b) 
2

1
sin >x  

c) 3sin >x  

 

Solution: 

 

a)  2sin −>x   because  1sin1 ≤≤− x   every Rx∈  is solution. 

 

 

b) 
2

1
sin >x  

First, we solve the appropriate equation: 
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                                                          Therefore, equations solutions are: 
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Now, think! Since we need to be  
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sin >x ,  we  take the "upper part". 
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                                                          We must  add periodicity: 
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c)    3sin >x   

 

     This is impossible, therefore, inequalities   has  no solution! 

 

 

 

 

Example 2. Solve the inequalities: 

 

a) 2sin −<x  

b) 
2

2
sin −≤x  

c) 5sin <x  

 

 

Solution: 

 

a) 2sin −<x  ⇒How is   1sin1 ≤≤− x , therefore never be less than -2, the inequalities  has no solution. 

 

b) 
2

2
sin −≤x  

First, we solve solution: 
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sin −=x                                                          
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                                                   For inequalities 
2

2
sin −≤x we need "lower" part! So: 
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c)  5sin <x  

 

How is 1sin1 ≤≤− x ,  these inequalities are always satisfied, Rx∈∀  is solution. 

 

 

Inequalities cosx > b  and  cosx < b 

 

 
                        1−<b - every number is solution, Rx∈∀  

bx >cos      11 ≤≤− b - we must solve 

                          1≥b - no solution 

 

 

                          1−<b - no solution 

bx <cos       11 ≤≤− b - we must solve 

                                          1>b  - every number is solution, Rx∈∀  

 

 

Example 1.  Solve the inequalities: 

 

a) 2cos −>x  

b) 
2

1
cos >x  

               c) 
2

3
cos >x  

 

Solution: 

 

a) 2cos −>x    every number is solution, Rx∈∀  

 

b) 
2

1
cos >x  

First, we solve  
2

1
cos =x                                                              
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For the solutions we need angles which is the cosine of more than
2

1
,that means "right". 
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c) 
2

3
cos >x  

 

The inequalities  has no solutions, because  the largest value for the "cosine", as we know, can be 1. 

 

 

Example 2. Solve the inequalities: 

 

a) 2cos −<x  

b) 
2

1
cos −≤x  

c) 2cos <x  

 

 

Solution: 

 

a) 2cos −<x -  no solution. 

 

b) 
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1
cos −≤x                   
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For solution  of  inequalities 
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cos −≤x  we need  "left" part! 

 

Solution is: π
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         c) 2cos <x                                 every number is solution, Rx∈∀        

 

 

 

 

 

 

 



 

Inequalities  with   tgx and  ctgx: 

 
These inequalities as opposed to those with sinx and cosx always have the solutions and take value from the  

 

whole set R. 

 

Example 1.  Solve the inequalities: 
 

                                                                    a) 3>tgx  

                                                                    b) 1<tgx  

 

 

Solution: 

 

3=tgx                 πkx o += 60  

 

Think, where is  tgx > 3 ? 
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First interval is make by angles from o60  to o90 . 

 

Second interval  from  o240   to  o270 . 

 

So here we have two intervals  with solutions! 

 
oo x 9060 <<                    and                           oo x 270240 <<          Add period… 
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b) 1<tgx  

 

1=tgx   , Solutions are angles   o45  and o225 .       

 

We need to be tangent less than 1 (bold) 
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Again we have two solutions! 
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Example 2. Solve the inequalities: 

 

                                                 a) 
3

3
>ctgx  

                                                 b) 0<ctgx  

 

Solution: 

 

a) oxctgx 60
3

3
=⇒=  and  ox 240=

x

y

0

0

60

0
180

240

0

0

 

Again two intervals: 
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b) 0=ctgx        
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                                                            Examples: 

 

1) Solve the inequalities:        0
2

3
3sin ≥−x  

 

Solution: 
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2) Solve the inequalities:          2cossin <+ xx  

 

Solution: 

 

This is the type of "support the introduction of argument"( see trigonometric equations) 
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So, solution is x∀  exsept   π
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3)  Solve the inequalities:          02sin5sin2 2 >++ xx  

 

 

Solution: 

 

 

02sin5sin2 2 >++ xx → replacement  sinx = t 

→>++ 0252 2 tt see square inequalities! 
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Since 1sin1 ≤≤− x  we have to make a correction of interval! 
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4) Prove that applies to everyone 8
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Proof: 

 

Transform expression on the left side! 
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             Let's go back to the task: 
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            And this certainly is! 

 

 

 

 

 

 

 

 

 

 


