Trigonometric inequalities

When we seeking solutions of inequalities, we first solve the appropriate equation, and then find intervals that meet the inequalities.

Inequalities $\sin x>a$ and $\sin x<a$

$$
a<-1 \text {-every number is solution, } \forall x \in R
$$

```
sin}x>a\quad-1\leqa\leq1- we must solv
```

 \(a \geq 1\)-no solution
 $$
\begin{aligned}
& a \leq-1-\text { no solution } \\
\sin x<a & -1 \\
& \leq a \leq 1-\text { we must solve } \\
& a>1-\text { every number is solution, } \forall x \in R
\end{aligned}
$$

Example 1. Solve the inequalities:

a) $\sin x>-2$
b) $\sin x>\frac{1}{2}$
c) $\sin x>3$

Solution:

a) $\sin x>-2$ because $-1 \leq \sin x \leq 1$ every $x \in R$ is solution.
b) $\sin x>\frac{1}{2}$

First, we solve the appropriate equation:

$$
\sin x=\frac{1}{2}
$$

Therefore, equations solutions are:

$$
x=\frac{\pi}{6}+2 k \pi
$$

$$
x=\frac{5 \pi}{6}+2 k \pi
$$

Now, think! Since we need to be $\sin x>\frac{1}{2}$, we take the "upper part".

So: $\frac{\pi}{6}<x<\frac{5 \pi}{6}$
We must add periodicity:

$$
\frac{\pi}{6}+2 k \pi<x<\frac{5 \pi}{6}+2 k \pi, \quad k \in Z \text { is solution! }
$$

c) $\sin x>3$

This is impossible, therefore, inequalities has no solution!

Example 2. Solve the inequalities:

a) $\sin x<-2$
b) $\sin x \leq-\frac{\sqrt{2}}{2}$
c) $\sin x<5$

Solution:

a) $\sin x<-2 \Rightarrow$ How is $-1 \leq \sin x \leq 1$, therefore never be less than -2 , the inequalities has no solution.
b) $\sin x \leq-\frac{\sqrt{2}}{2}$

First, we solve solution: $\sin x=-\frac{\sqrt{2}}{2}$

$$
\begin{aligned}
& x=\frac{5 \pi}{4}+2 k \pi \\
& x=\frac{7 \pi}{4}+2 k \pi
\end{aligned}
$$

For inequalities $\sin x \leq-\frac{\sqrt{2}}{2}$ we need "lower" part! So: $\frac{5 \pi}{4} \leq x \leq \frac{7 \pi}{4}$

$$
\frac{5 \pi}{4}+2 k \pi \leq x \leq \frac{7 \pi}{4}+2 k \pi, k \in Z
$$

c) $\sin x<5$

How is $-1 \leq \sin x \leq 1$, these inequalities are always satisfied, $\forall x \in R$ is solution.

Inequalities $\cos x>b$ and $\cos x<b$

$$
\begin{array}{cc}
& b<-1-\text { every number is solution, } \forall x \in R \\
\cos x>b & -1 \leq b \leq 1-\text { we must solve } \\
b \geq 1-\text { no solution } \\
& \\
& b<-1-\text { no solution } \\
\cos x<b & -1 \leq b \leq 1-\text { we must solve } \\
& b>1 \quad-\text { every number is solution, } \forall x \in R
\end{array}
$$

Example 1. Solve the inequalities:

a) $\cos x>-2$
b) $\cos x>\frac{1}{2}$
c) $\cos x>\frac{3}{2}$

Solution:

a) $\cos x>-2$ every number is solution, $\forall x \in R$
b) $\cos x>\frac{1}{2}$

First, we solve $\cos x=\frac{1}{2}$

For the solutions we need angles which is the cosine of more than $\frac{1}{2}$,that means "right".

$$
\text { So: } \quad-\frac{\pi}{3}+2 k \pi<x<\frac{\pi}{3}+2 k \pi \quad, \quad k \in Z
$$

c) $\cos x>\frac{3}{2}$

The inequalities has no solutions, because the largest value for the "cosine", as we know, can be 1 .

Example 2. Solve the inequalities:

a) $\cos x<-2$
b) $\cos x \leq-\frac{1}{2}$
c) $\cos x<2$

Solution:

a) $\cos x<-2-$ no solution.
b) $\cos x \leq-\frac{1}{2} \longrightarrow \cos x=-\frac{1}{2}$

$x=\frac{2 \pi}{3}+2 k \pi$
For solution of inequalities $\cos x \leq-\frac{1}{2}$ we need "left" part!
$x=\frac{4 \pi}{3}+2 k \pi$
Solution is: $\frac{2 \pi}{3}+2 k \pi \leq x \leq \frac{4 \pi}{3}+2 k \pi$
c) $\cos x<2 \longrightarrow$ every number is solution, $\forall x \in R$

Inequalities with tgx and $\operatorname{ctg} x$:

These inequalities as opposed to those with sinx and cosx always have the solutions and take value from the whole set R.

Example 1. Solve the inequalities:

a) $\operatorname{tg} x>\sqrt{3}$
b) $\operatorname{tg} x<1$

Solution:

$\operatorname{tg} x=\sqrt{3} \longrightarrow x=60^{\circ}+k \pi$
Think, where is $\operatorname{tg} x>\sqrt{3}$?

First interval is make by angles from 60° to 90°.

Second interval from 240° to 270°.
So here we have two intervals with solutions!

$$
\begin{array}{lr}
\quad 60^{\circ}<x<90^{\circ} & \text { and } \\
\frac{\pi}{3}+k \pi<x<\frac{\pi}{2}+k \pi & \frac{4 \pi}{3}+k \pi<x<\frac{3 \pi}{2}+k \\
k \in Z & k \in Z \\
x \in\left(\frac{\pi}{3}+k \pi, \frac{\pi}{2}+k \pi\right) & x \in\left(\frac{4 \pi}{3}+k \pi, \frac{3 \pi}{2}+k \pi\right) \\
k \in Z &
\end{array}
$$

b) $\operatorname{tg} x<1$
$\operatorname{tg} x=1$, Solutions are angles 45° and 225°.
We need to be tangent less than 1 (bold)

Again we have two solutions!

$$
\begin{aligned}
& -\frac{\pi}{2}<x<\frac{\pi}{4} \quad \text { and } \quad \frac{\pi}{2}<x<\frac{5 \pi}{4} \quad \text { or, we can write: } \\
& x \in\left(-\frac{\pi}{2}+k \pi, \frac{\pi}{4}+k \pi\right) \cup\left(\frac{\pi}{2}+k \pi, \frac{5 \pi}{4}+k \pi\right) \\
& k \in Z
\end{aligned}
$$

Example 2. Solve the inequalities:

a) $\operatorname{ctg} x>\frac{\sqrt{3}}{3}$
b) $\operatorname{ctg} x<0$

Solution:

a) $\operatorname{ctg} x=\frac{\sqrt{3}}{3} \Rightarrow x=60^{\circ}$ and $x=240^{\circ}$

Again two intervals: $0<x<\frac{\pi}{3}$ and $\pi<x<\frac{4 \pi}{3}$
Solution is: $\quad x \in\left(0+k \pi, \frac{\pi}{3}+k \pi\right) \cup\left(\pi+k \pi, \frac{4 \pi}{3}+k \pi\right), k \in Z$
b) $\operatorname{ctg} x=0$

$\frac{\pi}{2}<x<\pi$ and $\frac{3 \pi}{2}<x<2 \pi$
$x \in\left(\frac{\pi}{2}+k \pi, \pi+k \pi\right) \cup\left(\frac{3 \pi}{2}+k \pi, 2 \pi+k \pi\right)$
$k \in Z$

Examples:

1) Solve the inequalities: $\quad \sin 3 x-\frac{\sqrt{3}}{2} \geq 0$

Solution:

$$
\begin{aligned}
& \sin 3 x-\frac{\sqrt{3}}{2}=0 \\
& \sin 3 x=\frac{\sqrt{3}}{2}
\end{aligned}
$$

$$
\frac{\pi}{3}+2 k \pi \leq 3 x \leq \frac{2 \pi}{3}+2 k \pi \quad \text { and then } \quad \frac{\pi}{9}+\frac{2 k \pi}{3} \leq x \leq \frac{2 \pi}{9}+\frac{2 k \pi}{3}
$$

2) Solve the inequalities: $\quad \sin x+\cos x<\sqrt{2}$

Solution:

This is the type of "support the introduction of argument"(see trigonometric equations)

$$
\begin{aligned}
& \mathrm{a}=1 \\
& \mathrm{~b}=1 \\
& \qquad \operatorname{tg} \varphi=\frac{b}{a} \Rightarrow \operatorname{tg} \varphi=\frac{1}{1} \Rightarrow \operatorname{tg} \varphi=1 \\
& \mathrm{c}=\sqrt{2} \\
& \frac{c}{\sqrt{a^{2}+b^{2}}}=\frac{\sqrt{2}}{\sqrt{1+1}}=\frac{\sqrt{2}}{\sqrt{2}}=1 \quad \text { So: } \sin (x+\varphi)=\frac{c}{\sqrt{a^{2}+b^{2}}} \Rightarrow \sin \left(x+\frac{\pi}{4}\right)=1 \\
& \sin \left(x+\frac{\pi}{4}\right)<1 \\
& \text { It does not answer only if } \sin \left(x+\frac{\pi}{4}\right)=1 \\
& x+\frac{\pi}{4}=\frac{\pi}{2}+2 k \pi \\
& x=\frac{\pi}{2}-\frac{\pi}{4}+2 k \pi \\
& x=\frac{\pi}{4}+2 k \pi
\end{aligned}
$$

So, solution is $\forall x$ exsept $\frac{\pi}{4}+2 k \pi \longrightarrow x \neq \frac{\pi}{4}+2 k \pi, k \in Z$

Solution:

$$
\begin{aligned}
& 2 \sin ^{2} x+5 \sin x+2>0 \rightarrow \text { replacement } \sin x=\mathrm{t} \\
& 2 t^{2}+5 t+2>0 \rightarrow \text { see square inequalities! } \\
& t_{1,2}=\frac{-5 \pm 3}{4} \\
& t_{1}=-\frac{1}{2} \\
& t_{2}=-2 \\
& t \in(-\infty,-2) \cup\left(-\frac{1}{2}, \infty\right) \\
& \sin x \in(-\infty,-2) \cup\left(-\frac{1}{2}, \infty\right)
\end{aligned}
$$

Since $-1 \leq \sin x \leq 1$ we have to make a correction of interval!
$\sin x \in\left(-\frac{1}{2}, 1\right] \longrightarrow \sin x>-\frac{1}{2}$

$-\frac{\pi}{6}+2 k \pi<x<\frac{7 \pi}{6}+2 k \pi \quad$ final solution!
$k \in Z$
4) Prove that applies to everyone $\alpha: \frac{1}{\sin ^{4} \alpha}+\frac{1}{\cos ^{4} \alpha} \geq 8$

Proof:
Transform expression on the left side!

$$
\begin{aligned}
& \frac{1}{\sin ^{4} \alpha}+\frac{1}{\cos ^{4} \alpha}=\frac{\cos ^{4} \alpha+\sin ^{4} \alpha}{\sin ^{4} \alpha+\cos ^{4} \alpha}= \\
& \sin ^{2} \alpha+\cos ^{2} \alpha=1 /()^{2} \\
& \left(\sin ^{2} \alpha+\cos ^{2} \alpha\right)^{2}=1 \\
& \sin ^{4} \alpha+2 \sin ^{2} \cos ^{2} \alpha+\cos ^{4} \alpha=1 / \text { add } \frac{2}{2} \\
& \sin ^{4} \alpha+\cos ^{4} \alpha=1-\frac{2 \cdot 2 \sin ^{2} \alpha \cos ^{2} \alpha}{2} \\
& \sin ^{4} \alpha+\cos ^{4} \alpha=1-\frac{\sin ^{2} 2 \alpha}{2} \\
& \sin ^{4} \alpha+\cos ^{4} \alpha=\frac{2-\sin ^{2} 2 \alpha}{2}=\frac{1+1-\sin ^{2} 2 \alpha}{2} \\
& =\frac{1+\cos ^{2} 2 \alpha}{2}
\end{aligned}
$$

Let's go back to the task:

$$
\begin{aligned}
& \frac{\cos ^{4} \alpha+\sin ^{4} \alpha}{\sin ^{4} \alpha \cdot \cos ^{4} \alpha}=\frac{1+\cos ^{2} 2 \alpha}{2 \sin ^{4} \alpha \cdot \cos ^{4} \alpha}=\operatorname{add}\left(\frac{8}{8}\right) \\
& \frac{8\left(1+\cos ^{2} 2 \alpha\right)}{16 \sin ^{4} \alpha \cos ^{4} \alpha}=\frac{8\left(1+\cos ^{2} 2 \alpha\right)}{\sin ^{4} 2 \alpha} \geq 8
\end{aligned}
$$

And this certainly is!

